
US NDC Modernization
SAND200X-XXXX
Unlimited Release
December 2014

US NDC Modernization: Service Oriented
Architecture Proof of Concept

Version 1.1

Benjamin R. Hamlet, Andre V. Encarnacao, Keilan R. Jackson, Ian A. Hays, Nathan E.
Barron, Luke B. Simon, James M. Harris, and Christopher J. Young

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2014-20567R

2

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

3

SAND200X-XXXX
Unlimited Release

December 2014

US NDC Modernization: Service Oriented
Architecture Proof of Concept

Benjamin R. Hamlet, Andre V. Encarnacao, Keilan R. Jackson, Ian A. Hays, Nathan E. Barron,
Luke B. Simon, James M. Harris, and Christopher J. Young

Next Generation Monitoring Systems
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-MS0401

Abstract

This report is a progress update on the US NDC Modernization Service Oriented
Architecture (SOA) study describing results from a proof of concept project
completed from May through September 2013. Goals for this proof of concept are 1)
gain experience configuring, using, and running an Enterprise Service Bus (ESB), 2)
understand the implications of wrapping existing software in standardized interfaces
for use as web services, and 3) gather performance metrics for a notional seismic
event monitoring pipeline implemented using services with various data access and
communication patterns. The proof of concept is a follow on to a previous SOA
performance study. Work was performed by four undergraduate summer student
interns under the guidance of Sandia staff.

4

REVISIONS

Version Date Author/Team Revision Description Authorized by

1.0 10/31/2013 US	NDC	Modernization Team Initial	Release M.	Harris

1.1 12/19/2014 IDC	Reengineering	Team IDC	Release M.	Harris

5

CONTENTS

1. Introduction..7
1.1. Service Implementations..7
1.2. Service Communication and Interface Patterns ..8
1.3. Supporting Software ..9

1.3.1. Central Clock and Available Data Lists ..9
1.3.2. Performance Metrics ..9
1.3.3. Service Setup and Principles...10

2. Processing Pipeline Structures...12

3. Performance Study and Results ...14
3.1 Configuration ..14
3.2 Results and Analysis..15

4. Summary..17

5. References..18

Appendix A: Performance Testing Results ..19

FIGURES

Figure 1. Centralized controller component ...8
Figure 2. Distributed control logic (no centralized controller component)....................................8
Figure 3. MuleESB flow describing the PEDAL service..10
Figure 4. Interface required by all pipeline processing services ...11
Figure 5. Interface required by all network event pipeline processing services...........................11
Figure 7. Processing pipeline with distributed control..13
Figure 8. Processing pipeline with central controller ...14

TABLES

Table 1. Service processing time intervals ..15
Table 2. Performance testing results ...19

6

NOMENCLATURE

DOE Department of Energy
ESB Enterprise Service Bus
IDC International Data Center
IMS International Monitoring System
REST Representational State Transfer
SNL Sandia National Laboratories
SOA Service Oriented Architecture
US NDC United States National Data Center
XML Extensible Markup Language

7

1. INTRODUCTION

This report describes a Service Oriented Architecture (SOA) proof of concept project performed
as a follow on to a previous SOA study [1]. This proof of concept focused on deploying
previously developed seismic monitoring research software as web services, configuring the
services into a basic seismic monitoring pipeline, and gathering performance metrics for several
pipeline structures and communication formats.

1.1. Service Implementations

Seismic event monitoring pipelines used in this proof of concept are composed of several distinct
services. Each service implements interfaces with well-defined contracts for the types of data
consumed as input and produced as output. The final outputs of these pipelines are a list of
seismic events with their associated signal detections. Rather than using a single, monolithic
application to perform all processing, this proof of concept links together services performing
particular aspects of event formation. Since the output of one service is the input to the next
service, combining the services creates a pipeline where raw waveform data is provided as input
and event lists are produced as output.

The existing Sandia developed research applications wrapped as services were:
 WavePro (Waveform Processor) – a signal processing application designed to detect

signals of interest in data recorded by both 3-component seismic stations and seismic
array stations [2]. WavePro includes functions for waveform filtering, rotation, beaming,
and signal detection.

 PEDAL (Probabilistic Event Detector, Associator, and Locator) – an event detection
application that operates on collections of signal detections from a network of seismic
stations [3].

 LocOO3D (Locator, Object Oriented, 3-dimensional base model support) – a seismic
event location refinement application that operates on an existing event with a set of
associated signal detections. LocOO3D supports a variety of Earth models, including
SALSA3D (Sandia and Los Alamos 3-dimensional model) [4, 5].

Additional services were created for:
 Pipeline configuration -- a web interface used to:

o configure the type of pipeline to run and the data to run through the pipeline
o initiate runs and cancel runs
o view log files from previous runs.

 Waveform injection – used to play raw waveform data previously recorded by
International Monitoring System (IMS) seismic array stations into the WavePro service.

 Bulletin output -- used to write processing results into a relational database with the
Center for Seismic Study (CSS) 3.0 schema [6].

 Pipeline results review – used to graphically and textually review pipeline results.. An
interactive map displays monitoring station and event locations. Textual displays list
event and signal detection results computed by the pipeline.

8

1.2. Service Communication and Interface Patterns

Services developed for this proof of concept implement two service communication patterns and
two service interface standards described in a previous SOA study [1]. Performance
measurements gathered for running the same series of seismic data through the four possible
pipeline configurations are discussed in Section 3.
The two communication patterns were:

1. Centralized control logic: a central controller component brokers communication
between services. All services receive input from the controller and pass results back to
the controller. Services are completely decoupled from one another.

Figure 1. Centralized controller component

2. Distributed control logic: services pass messages directly to other services without using
a central controller component.

Figure 2. Distributed control logic (no centralized controller component)

The two service interface standards were:
1. Light interfaces follow the current system design, where information is passed primarily

through the database. In this option, simple messages are sent between services declaring
where in the database the invoked service will find input parameters. Service interfaces
are decoupled from one another by passing parameters through the backing data store, but
services rely on a contract external to the interfaces defining what parameters are
expected in the data store.

9

2. Rich interfaces provide more service separation from the surrounding environment by
defining all input parameters as part of the interface, freeing services from having to
negotiate a common parameter area in the data store. Services optionally access the data
store for additional configuration parameters that are either invariant from one invocation
to the next or are implementation specific parameters hidden from clients.

1.3. Supporting Software

Additional software supported this proof of concept project. Of particular importance are a
central clock to enforce timing constraints and a logging mechanism used to gather performance
metrics and collect general status messages.

1.3.1. Central Clock and Available Data Lists
Each service in the proof of concept pipeline is configured to run at a fixed time interval. The
timer intervals for each service are potentially unique. This creates a situation where services
require two types of interfaces. The first accepts data for future processing and the second
triggers processing on the available inputs. When run, a service processes all available inputs,
creates outputs, and then passes those outputs to the next service for further processing. Each
pipeline service registers a time interval with the central clock. The central clock notifies the
service at the registered interval, triggering the service to process all previously queued data.

The central clock was implemented with a time scaling factor to allow the clock to run at speeds
faster or slower than real time. This proved useful as it allows the pipeline be sped up to process,
for example, one day’s worth of data over the course of several hours rather than the day it
would take if the clock were running in real time.

1.3.2. Performance Metrics
The pipeline processing services were configured to gather performance metrics during their
execution. All times are computed by a single service running on a single machine so that valid
elapsed times can be computed without requiring clocks to be synchronized across multiple
machines. Both service execution and service overhead times are computed. Overhead time
consists of the time required for messages to be prepared (marshaled from the service’s internal
data format into a standard format that can be communicated across a network), passed from one
service to the next, and then parsed (unmarshaled from the communication format to the
receiving service’s internal format) at the receiving service. Execution time is the amount of
time required to process a set of data and does not include any messaging, marshaling, or
unmarshaling time.

As mentioned above, unless clocks are synchronized, elapsed times must be computed from
initiation and completion times measured on a single machine. Since measuring overhead times
includes the time required to send a message from one service to another, and since the services
might be run on different machines, services are required to send an acknowledgement message
whenever they receive a message whose overhead is being timed. The elapsed time for the
message is then computed as the time required to marshal, transmit, and unmarshal the message
plus the time required to send the acknowledgement message. Sending these acknowledgement

10

messages introduces timing errors, but since these timing messages are small and are required for
computing the overhead times for each service and each pipeline structure, the errors should be
negligible when making relative performance comparisons between times measured for different
pipeline structures.

1.3.3. Service Setup and Principles

Services in this proof of concept were implemented as standard web services using
Representational State Transfer (REST) over the Hypertext Transfer Protocol (HTTP). Data
passed between services were formatted as plaintext Extensible Markup Language (XML)
documents. Seismic data were passed using an XML representation of CSS 3.0 formatted data.

The Mule Enterprise Service Bus (ESB) was used to configure and deploy services [7].
MuleESB is a widely-used free package that is easy to install and has good documentation. .
MuleESB service flows were configured for the pipeline services and the central clock, central
controller, and logging services used as utilities by the pipeline services. Additional flows were
created to handle the logistics of configuring, starting, and stopping pipeline execution.

MuleESB provides a graphical editor for configuring services. Graphical versions of service
flows are backed by XML descriptions that can also be hand edited. The PEDAL service seen in
Figure 3 has a simple flow with two main steps and an additional asynchronous step for logging
status messages and performance measurements. The first step, represented by the “HTTP”
block, specifies where the service is located. It is used so that MuleESB and other services know
where to access the PEDAL service. The second step, represented by the “REST” block,
specifies the Java class used to implement the PEDAL service. It is used so that MuleESB
knows what code to call when the PEDAL service is accessed.

Figure 3. MuleESB flow describing the PEDAL service

The Java code used to define the PEDAL service implements a Java interface describing the
contract required of any network event processing service used in this proof of concept system,

11

which itself specializes a Java interface describing the contract required of all pipeline
processing services. The basic service interface is:

Figure 4. Interface required by all pipeline processing services

This interface has a method for configuring the service (setProperties), methods supporting the
central clock mechanism previously described with both the rich and light service interface
standards (richQueueData, lightQueueData, richPulse, lightPulse), and methods to support
either stopping a running pipeline (clearQueue) or discover when a pipeline is processing data
(isActive)

The network event processing interface is a simple extension of the basic service interface that
describes the type of data processed by any network event processing service:

Figure 5. Interface required by all network event pipeline processing services

This interface forces network event pipeline processing services to process DetectionData
objects as input to the rich interface (these objects contain signal detections at individual seismic
stations) and IdList objects as input to the light interface (these objects describe a list of identifie r
used as primary keys in database tables and are used to query a database for signal detections).

Though simple, these interfaces help illustrate two basic principles followed throughout this
proof of concept project:

1. Decouple interfaces from implementations: services are abstracted by generalized
interfaces describing what types of data are processed by services. The interfaces are
independent of underlying algorithm implementations. Since only a few simple methods
are required to cover different realizations of a service interface, the data types used by
the service methods must be sufficiently expressive to meet the needs of future
implementations. This proof of concept used Java representations of CSS 3.0 objects, a
standard format used in nuclear explosion monitoring seismology.

12

2. Decouple services from one another: services have no knowledge of the larger context in
which they are being used. Services have no prior knowledge of which other services
will call them nor do services have prior knowledge of where their outputs are sent. Each
service’s setProperties method is used at runtime to configure where the service will send
its outputs. Service interfaces used in a production system would likely force stronger
contracts between services by specifying the output data formats in addition to the input
data formats, which would allow early indication when a service is configured to send its
output to an incompatible location. This proof of concept project did not enforce this
type of contract, so these kinds of errors were not discovered until one service attempted
to send data of an incorrect type to another service.

Whereas both rich and light service interfaces are explicit in the Java code, there is no indication
at the Java level of whether a centralized or distributed control structure is used. Pipeline control
is configured at runtime by configuring each pipeline service to either send its output to another
pipeline processing service or to send its output to the central controller service.

2. PROCESSING PIPELINE STRUCTURES

The seismic processing pipeline used in this proof of concept consists of five components
executed in sequence:

1. Data injection: replays raw waveform data into the pipeline
2. Signal processing: signal detection processing on all received waveforms (WavePro)
3. Network processing: network event formation (PEDAL) processing on all signal

detections.
4. Event relocation: refines network event locations (LocOO3D) produced by network

processing.
5. a. Event bulletin: stores results to a database

b. Event review: graphically presents results (uses the same interface as the event
bulletin)

Each of these services implements the ServiceInterface previously described. The services are
configured to communicate using either a central controller service or by direct communication,
and data is passed either through a database (light interfaces) or directly between services (rich
interfaces). This leads to four basic pipeline structures shown in Figure 6 and Figure 7.

13

Figure 6. Processing pipeline with distributed control

When using distributed control, the pipeline services are configured to pass data to other pipeline
services. When using light interfaces, the data is written to a database and a compact message
containing only a list of database primary keys is passed to the next service. When using rich
interfaces, the services pass data directly to the next service without going through a database. In
either case, the receiving service queues data until it receives a message from the Clock
indicating the service should process the available data.

14

Figure 7. Processing pipeline with central controller

When using a central controller, the pipeline services are configured to pass data to the central
controller service. This service has the option to parse the data and then make decisions about
what type of processing to perform next. In this proof of concept the central controller simply
passes the data to the next service in the pipeline. Although this means there is no logic in the
controller, this setup is sufficient to study the performance implications of using a centralized
control mechanism. Rich interfaces, light interfaces, and the clock service otherwise operate the
same as when using distributed pipeline control.

Though not explicitly shown in either Figure 6 or Figure 7, all of the services are implemented
and executed using MuleESB flows similar to the one shown in Figure 3.

When running these pipelines, each service is triggered by the clock service to process available
data at fixed time intervals. Depending on the amount of raw data played into the pipeline by the
data injection service, each service is likely to run multiple times.

3. PERFORMANCE STUDY AND RESULTS

As discussed above, the two types of service interfaces (rich and light) and two types of pipeline
control (central and distributed) yield four possible pipeline configurations. A performance
study comparing processing times to overhead times was performed to understand the
implications of selecting one pipeline configuration over the other.

3.1 Configuration
Performance metrics were gathered for pipelines processing the 6 hours and 15 minutes of data
recorded between April 20, 2006 at 23:23:20 GMT and April 21, 2006 at 05:38:20 GMT at 9

15

International Monitoring System (IMS) seismic array stations (SONM, MJAR, ILAR, YKA,
BVAR, ASAR, WRA, GERES, and PDAR). Each service was registered with the clock to
process data at fixed time intervals. The time intervals are listed in Table 1. The clock scaling
factor was set to a speedup of 10 so that 60 minutes of data were played into the pipeline every 6
minutes. Performance metrics for message size, service processing time, and service overhead
time were gathered and are discussed below. Services were run within MuleESB on a single
workstation (Intel Xeon 3.60Ghz processor with 4 cores / 8 threads with hyperthreading enabled,
32.0GB of RAM, Windows 7).

Table 1. Service processing time intervals

Service Processing time interval (s)

Data injection 10
Signal processing 300

Network processing 600
Event relocation 600

Event bulletin / event review 600

3.2 Results and Analysis

In the absence of synchronized clocks, the same clock must be used to measure the starting and
ending times of a process to accurately measure an elapsed time. Service processing times can
be measured by the service itself, but messaging times must be measured by the machine sending
the message. Once values are measured they are assigned to services as follows:

 When using distributed pipeline control, messaging times and sizes are configured to
measure the costs of invoking a service. In this case, message size and overhead time are
both assigned to the receiving service.

 When using central pipeline control, messaging times and sizes are configured to
measure the costs of invoking a service from the controller plus the cost of the
subsequent call to the central controller after the service runs. In this case, the message
size assigned to a receiving service is the combined size of the message received by the
service plus the size of the subsequent processing results message sent to the central
controller after the service runs. The message time assigned to a receiving service is the
combined time to call the service from the central controller plus the time to send the
results to the central controller after the service runs.

Full results are listed in Appendix A: Performance Testing Results. The overall results indicate
waveform based operations dominate costs. In particular, the highest messaging times,
messaging sizes, and processing times are all at the injector and signal processing services.
While Table 1 indicates these services operate more often than the other services, the results in
Appendix A also show they have average messaging times, messaging sizes, and processing
times of the same order or higher than the non-waveform services.

16

When interpreting these results keep the following in mind:

 In a real monitoring system, it is likely that waveform data would be stored in small
blocks to facilitate processing, but for SNL’s nuclear monitoring research program we
store waveform data in two hour blocks, to facilitate data management. The two hour
blocks of data cause performance problems because less than one minute of data per
channel is injected into the pipeline at a time. Reading two hours of waveform data,
extracting the correct portion to inject, injecting that portion, and then unloading the rest
of the waveform significantly degraded performance in early pipeline testing. This was
mitigated by implementing a waveform cache to hold full two hour blocks of waveform
data. Once data from a two hour block is read prior to the first injection of data, a
waveform will likely appear in the cache and so subsequent injections will not incur
either a database query to identify the correct waveform file or a disk read operation to
load the waveform. Caching has implications for the processing times of services using
the cache. Waveform caching is used by the injection service in pipelines using rich
service interfaces and in the signal processing service for pipelines using light service
interfaces.

 All services, including the ESB, were run on a single computer. Enabling hyperthreading
allowed eight threads to run simultaneously on four cores. This scenario increases the
possibility of resource contention among the pipeline services and between the pipeline
services and other processes running on the computer. If resource contention occurs a
service maybe blocked access to the machine’s compute or input/output resources,
increasing either messaging or processing times. Resource contention is not believed to
have had significant effects on the performance metrics as the number of hyperthreads
exceeds the number of services, the pipeline’s time based execution spreads service
execution out over time, and the computer’s other loads were consistent during runs for
each pipeline configuration

 Though not shown in this study’s performance results, services could be easily deployed
to different machines, taking advantage of a much more powerful distributed computing
infrastructure. However, doing so has implications to messaging times and overall
overhead costs.

Given these caveats, we make some observations based on the performance results:
 Total processing times for rich service interfaces are on the order of 5 times longer than

total processing times for light services interfaces.
 Distributed pipeline control approximately doubles messaging overhead.
 Messages related to raw data availability are the most important factors in overhead rates

o Rich service interface performance is limited by waveform messaging times.
o .Light service interface performance is limited by data availability messages sent

to the signal processor service.
o Injector messages account for significant overhead in each pipeline structure.

Rich service interfaces allow for isolated services that do not rely on access to an underlying data
store. While this provides flexibility in system design it comes with increased messaging
overhead. Since the costs associated with moving from light service interfaces to rich service

17

interfaces are much higher than the costs associated with moving between controller styles for a
given type of interface, the primary performance decision is selecting between rich and light
service interface. The above observations indicate that if performance is of primary concern then
light service interfaces should be preferred.

Our results show light service interfaces with central control took less overall time to run than
light interfaces with distributed control, even though the overhead times were higher when using
central control. Running more tests might better indicate the relative costs of distributed and
central control when using light interfaces. Given the small message sizes associated with using
light interfaces, the costs of merely passing a message to a central controller and then to another
service do not fully capture the costs of a central controller with embedded logic. This is
because higher control costs would occur if the central controller required access to data stored
in a database before deciding how to react to a message. This is an area warranting further study
if the performance penalty of using such a central controller is of concern.

4. SUMMARY

This proof of concept project successfully demonstrates the feasibility of implementing a seismic
monitoring pipeline using service oriented architecture implemented using a standard ESB
package (MuleESB). Generalized service interfaces based on standard seismic data
representations were used to define basic pipeline operations that were then implemented using
existing research applications. Abstractions for different types of system implementations (rich
and light service interfaces, central and distributed pipeline control) allow various pipeline
configurations. Each service gathered timing and messaging metrics to allow studying tradeoffs
inherent in selecting one type of system architecture over another. Performance metrics gathered
from running different pipeline configurations on previously recorded IMS waveform data
provides information that can be used when making system architecture decisions.

18

5. REFERENCES

1. Hamlet, Benjamin R., A. V. Encarnacao, J. M. Harris, and C. J. Young, (December
2014). US NDC Modernization: Service Oriented Architecture Study Status, Sandia
National Laboratories, Albuquerque, NM.

2. Encarnacao, Andre V. (2013). WavePro, Sandia National Laboratories internal
discussions, May-September, 2013.

3. Draelos, Timothy D., S. Ballard, C. J. Young, R. A. Brogan, (2012). Refinement and
Testing of the Probabilistic Event Detection Association and Location Algorithm,
Proceedings of the 2012 Monitoring Research Review, Albuquerque, New Mexico,
September 18-20, 2012.

4. LocOO Ballard, Sanford, J. R. Hipp, and C. J. Young (2009). Efficient and accurate
calculation of ray theory seismic travel time through variable resolution 3D earth
models, Seismic Research Letters 80, 6: 989–998, doi:10.1785/gssrl.80.6.989.

5. Ballard, Sanford. (2002). Seismic event location using Levengerg-Marquardt least
squares inversion. SAND2002-3083, Sandia National Laboratories, Albuquerque, NM,
(Unclassified)

6. Anderson, J., W. E. Farrell, K. Garcia, J. Given, and H. Swanger (1990). Center for
Seismic Studies Version 3.0 Database Schema Reference Manual, SAIC Tech. Rep. C90-
01, Arlington, Virginia.

7. Mule ESB. MuleSoft Inc., 2013 (http://www.mulesoft.org).

19

APPENDIX A: PERFORMANCE TESTING RESULTS

Table 2. Performance testing results

RICH/DISTRIBUTED RICH/CENTRAL LIGHT/DISTRIBUTED LIGHT/CENTRAL

Injector

Messaging Time (ms)

Message count 2,154.0 3,722.0 2,123.0 3,967.0

Total 449,931.0 2,088,254.0 283,528.0 913,235.0

Average 208.9 561.1 133.6 230.2

St. Dev 124.9 1,382.9 58.9 132.4

Lowest 102.0 106.0 95.0 92.0

Highest 2,213.0 81,031.0 1,160.0 1,999.0

Message Size (bytes)

Message count 2,155.0 3,741.0 2,160.0 3,979.0

Total 252,135.0 3,358,300,265.0 252,720.0 31,905,135.0

Average 117.0 897,701.2 117.0 8,018.4

St. Dev 0.0 1,537,412.2 0.0 8,685.4

Lowest 117.0 117.0 117.0 117.0

Highest 117.0 2,308,379.0 117.0 41,981.0

Processing Time (ms)

Message count 1,716.0 1,629.0 1,795.0 1,797.0

Total 48,133,028.0 58,919,501.0 1,670,258.0 1,699,716.0

Average 28,049.6 36,169.1 930.5 945.9

St. Dev 31,392.9 47,354.0 120.0 125.1

Lowest 4,193.0 3,643.0 851.0 849.0

Highest 154,540.0 188,783.0 3,954.0 4,065.0

Signal Processing

Messaging Time (ms)

Message count 1,743.0 1,744.0 1,831.0 1,904.0

Total 697,307.0 765,537.0 242,570.0 296,053.0

Average 400.1 439.0 132.5 155.5

St. Dev 139.2 143.1 49.1 72.6

Lowest 142.0 183.0 92.0 111.0

Highest 2,494.0 1,945.0 1,165.0 1,320.0

20

RICH/DISTRIBUTED RICH/CENTRAL LIGHT/DISTRIBUTED LIGHT/CENTRAL

Message Size (bytes)

Message count 1,737.0 1,743.0 1,832.0 1,904.0

Total 3,649,942,446.0 3,438,507,061.0 30,897,854.0 108,043,424.0

Average 2,101,291.0 1,972,752.2 16,865.6 56,745.5

St. Dev 2,491,167.3 2,491,306.7 2,108.2 13,150.1

Lowest 46,167.0 46,167.0 13,779.0 116.0

Highest 2,309,256.0 2,308,379.0 29,879.0 141,809.0

Processing Time (ms)

Message count 76.0 73.0 72.0 72.0

Total 1,081,348.0 1,024,285.0 7,697,305.0 6,845,740.0

Average 14,228.3 14,031.3 106,907.0 95,079.7

St. Dev 10,328.8 10,257.8 66,432.9 67,225.8

Lowest 3,236.0 170.0 11,819.0 11,710.0

Highest 54,285.0 47,319.0 238,187.0 255,862.0

Network Processing

Messaging Time (ms)

Message count 75.0 103.0 73.0 99.0

Total 19,132.0 40,249.0 14,346.0 26,691.0

Average 255.1 390.8 196.5 269.6

St. Dev 68.1 172.4 23.2 118.4

Lowest 145.0 182.0 117.0 142.0

Highest 569.0 883.0 278.0 1,004.0

Message Size (bytes)

Message count 75.0 105.0 73.0 98.0

Total 81,581,887.0 79,055,677.0 17,821.0 20,072.0

Average 1,087,758.5 752,911.2 244.1 204.8

St. Dev 307,751.1 529,824.1 78.4 81.8

Lowest 415,115.0 2,704.0 116.0 116.0

Highest 2,164,232.0 1,757,545.0 506.0 476.0

Processing Time (ms)

Message count 32.0 31.0 27.0 28.0

Total 180,027.0 132,824.0 94,541.0 72,706.0

Average 5,625.8 4,284.6 3,501.5 2,596.6

St. Dev 6,781.3 5,329.5 4,614.3 3,204.4

Lowest 493.0 392.0 380.0 349.0

Highest 28,185.0 21,407.0 23,194.0 14,956.0

21

RICH/DISTRIBUTED RICH/CENTRAL LIGHT/DISTRIBUTED LIGHT/CENTRAL

Event Relocation

Messaging Time (ms)

Message count 32.0 60.0 26.0 36.0

Total 6,445.0 39,646.0 4,749.0 9,249.0

Average 201.4 660.8 182.7 256.9

St. Dev 44.1 465.6 83.9 144.5

Lowest 93.0 115.0 113.0 123.0

Highest 279.0 2,077.0 350.0 559.0

Message Size (bytes)

Message count 30.0 61.0 36.0 44.0

Total 352,563.0 714,129.0 4,666.0 38,200.0

Average 11,752.1 11,707.0 129.6 868.2

St. Dev 7,758.4 7,284.3 18.2 1,800.6

Lowest 2,661.0 2,704.0 116.0 116.0

Highest 32,995.0 29,612.0 186.0 8,744.0

Processing Time (ms)

Message count 30.0 30.0 10.0 8.0

Total 61,306.0 74,708.0 51,990.0 34,522.0

Average 2,043.5 2,490.3 5,199.0 4,315.3

St. Dev 3,998.1 3,444.6 2,225.8 1,750.6

Lowest 0.0 0.0 3,224.0 2,586.0

Highest 17,734.0 13,708.0 11,395.0 8,458.0

Bulletin

Messaging Time (ms)

Message count 31.0 30.0 10.0 8.0

Total 9,401.0 8,919.0 1,881.0 1,182.0

Average 303.3 297.3 188.1 147.8

St. Dev 169.3 94.3 100.8 16.5

Lowest 156.0 153.0 99.0 129.0

Highest 929.0 519.0 458.0 174.0

Message Size (bytes)

Message count 31.0 30.0 9.0 8.0

Total 413,319.0 376,211.0 47,718.0 33,716.0

Average 13,332.9 12,540.4 5,302.0 4,214.5

St. Dev 9,994.9 7,963.4 3,538.1 2,036.1

Lowest 2,723.0 2,766.0 2,374.0 2,374.0

Highest 42,711.0 29,612.0 13,514.0 8,744.0

22

RICH/DISTRIBUTED RICH/CENTRAL LIGHT/DISTRIBUTED LIGHT/CENTRAL

Processing Time (ms)

Message count 28.0 28.0 39.0 39.0

Total 25,367.0 12,285.0 0.0 0.0

Average 906.0 438.8 0.0 0.0

St. Dev 1,258.7 572.6 0.0 0.0

Lowest 146.0 116.0 0.0 0.0

Highest 5,206.0 3,267.0 0.0 0.0

Summary

Total Time (ms): 50,663,292.0 63,106,208.0 10,061,168.0 9,899,094.0

Overhead %: 2.3% 4.7% 5.4% 12.6%

Total Data (B): 3,732,542,350.0 6,876,953,343.0 31,220,779.0 140,040,547.0

Start time (from log) 15:23:58 9:16:29 14:37:07 11:25:55

End time (from log) 16:04:08 9:55:51 15:17:28 12:06:15

Total runtime: 0:40:10 0:39:22 0:40:21 0:40:20

23

